bionty.Bionty#
- class bionty.Bionty(source, version=None, species=None, *, reference_id=None, synonyms_field=None, include_id_prefixes=None, include_name_prefixes=None, exclude_id_prefixes=None, exclude_name_prefixes=None, **kwargs)#
Bases:
object
Biological entity as an Bionty.
See Guide for background.
Attributes
- source :class:`~<class 'property'>`#
Name of the source.
- species :class:`~<class 'property'>`#
The
name
ofSpecies
Bionty.
- version :class:`~<class 'property'>`#
The
name
ofversion
entity Bionty.
Methods
- curate(df, column=None, reference_id=None, case_sensitive=True)#
Curate index of passed DataFrame to conform with default identifier.
If
target_column
isNone
, checks the existing index for compliance with the default identifier.If
target_column
denotes an entity identifier, tries to map that identifier to the default identifier.
- Parameters:
df – The input Pandas DataFrame to curate.
column – The column in the passed Pandas DataFrame to curate.
reference_id – The reference column in the ontology Pandas DataFrame. ‘Defaults to ontology_id’.
case_sensitive – Whether the curation should be case sensitive or not. Defaults to True.
- Return type:
DataFrame
- Returns:
Returns the DataFrame with the curated index and a boolean
__curated__
column that indicates compliance with the default identifier.
Examples
>>> import pandas as pd >>> import bionty as bt >>> df = pd.DataFrame(index=["Boettcher cell", "bone marrow cell"] >>> ct = bt.CellType() >>> curated_df = ct.curate(df, reference_id=ct.name)
- df()#
Pandas DataFrame of the ontology.
- Return type:
DataFrame
- Returns:
A Pandas DataFrame of the ontology indexed by the passed reference_id or “ontology_id” if not specified.
Examples
>>> import bionty as bt >>> bt.Gene().df()
- fuzzy_match(string, reference_id, synonyms_field='synonyms', case_sensitive=True, return_ranked_results=False)#
Fuzzy matching of a given string using RapidFuzz.
- Parameters:
string – The input string to match against the reference_id ontology values.
reference_id – The BiontyField of ontology the input string is matching against.
synonyms_field – Also map against in the synonyms (If None, no mapping against synonyms).
case_sensitive – Whether the match is case sensitive.
return_ranked_results – Whether to return all entries ranked by matching ratios.
- Return type:
str
- Returns:
Best match of the input string.
Examples
>>> import bionty as bt >>> ct = bt.CellType() >>> ct.fuzzy_match("T cells", ct.name)
- inspect(identifiers, reference_id, return_df=False)#
Inspect if a list of identifiers are mappable to the entity reference.
- Parameters:
identifiers – Identifiers that will be checked against the Ontology.
reference_id – The BiontyField of the ontology to compare against. Examples are ‘ontology_id’ to map against the ontology ID or ‘name’ to map against the ontologies field names.
return_df – Whether to return a Pandas DataFrame.
- Return type:
Union
[DataFrame
,dict
[str
,list
[str
]]]- Returns:
A Dictionary that maps the input ontology (keys) to the ontology field (values)
If specified A Pandas DataFrame with the curated index and a boolean
__curated__
column that indicates compliance with the default identifier.
Examples
>>> import pandas as pd >>> import bionty as bt >>> df = pd.DataFrame(index=["Boettcher cell", "bone marrow cell"] >>> ct = bt.CellType() >>> ct.inspect(df, reference_id=ct.name)
- lookup(field='name')#
Return an auto-complete object for the bionty id.
- Parameters:
field – The field to lookup the values for. Adapt this parameter to, for example, ‘ontology_id’ to lookup by ID. Defaults to ‘name’.
- Return type:
tuple
- Returns:
A NamedTuple of lookup information of the entitys values.
Examples
>>> import bionty as bt >>> gene_lookout = bt.Gene().lookup() >>> gene_lookout.TEF
- map_synonyms(identifiers, reference_id, *, synonyms_field='synonyms', return_mapper=False)#
Maps input identifiers against Ontology synonyms.
- Parameters:
identifiers – Identifiers that will be mapped against an Ontology field (BiontyField).
reference_id – The BiontyField of ontology representing the identifiers.
return_mapper – Whether to return a dictionary of {identifiers : <mapped reference_id values>}.
- Return type:
Union
[Dict
[str
,str
],List
[str
]]- Returns:
A list of mapped reference_id values if return_mapper is False.
A dictionary of mapped values with mappable identifiers as keys and values mapped to reference_id as values if return_mapper is True.
Examples
>>> import pandas as pd >>> import bionty as bt >>> gene_symbols = ["A1CF", "A1BG", "FANCD1", "FANCD20"] >>> gn = bt.Gene(source="ensembl", version="release-108") >>> mapping = gn.map_synonyms(gene_symbols, gn.symbol)